Mathematical Interpretation of Perspective in a Combine Painting Composed of Multilayer Cuboids (83129)

Session Information:

Session: On Demand
Room: Virtual Poster Presentation
Presentation Type:Virtual Poster Presentation

All presentation times are UTC + 1 (Europe/London)

Combine painting is an art that incorporates 3D sculpture with 2D painting to create various visual effects. The visual effects of 2D painting are largely based on perspective, while 3D sculpture inherently provides a three-dimensional view. Therefore, analyzing the 2D painting perspective and the three-dimensional view of the sculpture is an important aspect of understanding combine painting. Cuboids are common geometries, and multilayer cuboids, in particular, are widely used in sculpture, science, and engineering. In this study, mathematical analysis was conducted on the geometrical variations of multilayer cuboids from a 2D perspective when attaching them to 2D paintings, depending on the inclination between them. Various mathematical analyses were employed to demonstrate that as the inclination of multilayer cuboids increases, the frequency of overlapping between each cuboid also increases. Geometrical variations such as length and area of multilayer cuboids have influenced the overall 2D perspective of the combined art. This study provides insights into the relationship between sculpture and 2D painting perspective in combined art through mathematical analysis, offering a new direction for applying multilayer cuboids to painting for researchers and artists.

Authors:
Caroline Voorhees, St. Bernard's Academy, United States
Claire Shin, St. Bernard's Academy, United States


About the Presenter(s)
Ms Caroline Voorhees is a School Teacher/Instructor at St. Bernard's Academy in United States

See this presentation on the full scheduleOn Demand Schedule




Virtual Poster Presentation




Conference Comments & Feedback

Place a comment using your LinkedIn profile

Comments

Share on activity feed

Powered by WP LinkPress

Share this Presentation

Posted by Clive Staples Lewis

Last updated: 2023-02-23 23:45:00